Certified Naturally Grown Aquaponic Produce Inspection Forms

Producer: ___________________________ Name of operation: ___________________________
Inspector: ___________________________ Affiliation (eg. farm, university)____________________

The inspector is: □ aquaponics producer – CNG □ aquaponics producer – Cert Organic
□ aquaponics producer – non-certified □ aquaponics instructor or educator
□ hydroponics producer □ soil-based farmer – CNG or Cert Organic
(as approved by CNG in advance)

Date of the inspection: _________________ Duration (time spent on inspection): _______________

INSTRUCTIONS

The goal of the inspection is two-fold. Firstly, the inspection aims to verify that the CNG standards are being upheld. Just as important, the inspection offers an opportunity for producers to systematically review their practices with the inspector and reflect on how to improve sustainability in their operation.

The Inspector should:
- Use the Worksheets to guide questions to determine compliance with CNG standards
- Record what is discussed on the Worksheets
- Offer feedback and recommendations to improve practices and operations
- Help the producer set sustainability goals
- Complete these sections: Inspection Overview, Summary Inspection Report, and Inspector Contact Information
- Review List of Inputs on page 11
- Return all worksheets to CNG (scanned image or fax is fine). We recommend leaving a copy or the original with the producer.

The Producer should:
- Before inspection: complete the List of Inputs on page 11 for the inspector to review on-site.
- Gather relevant records including water monitoring logs, seed-related documentation, & water test results
- During: walk through operation with inspector, answering questions and sharing openly
- Complete the Sustainability Goals section
- Indicate one of your goals on the bottom of the Summary Inspection Report
- After: Return all worksheets to CNG and keep a copy for your records

PLEASE REMEMBER: It is easy to get side-tracked into specific conversations and discussions. Do that after the inspection is complete. Stay on track and perform a thorough inspection of the operation.

INSPECTION WORKSHEETS

I. System Design & Components

Required: Producers ensure that their system accomplishes appropriate rates of water circulation, aeration, biofiltration, degassing, and removal of fish waste solids to support the health of the fish, plants, and beneficial bacteria. Water circulation is typically at a rate that recirculates the water volume of the fish tank(s) each hour.

Recommended: Producers are encouraged to design systems that take advantage of gravity, and minimize the number of pumps and energy required to circulate the water.

A. What kind of system does the Producer use? (check all that apply)

 □ Media-filled bed system (also called flood and drain) □ Deep Water Culture (also called raft, deep flow, channel, float)
 □ Nutrient Film Technique □ Vertical systems
 □ Aeroponics □ Other (please describe): _________________________________

B. How does the system provide for adequate water circulation? [Typically at a rate that recirculates the water volume of the fish tank(s) each hour. If it is at a lower rate, ask producer to explain why.]
C. How does the producer ensure that the system provides adequate aeration and degassing?

D. Materials:

(i) What materials are used for the fish tanks, tubing liners, and growing media/root supports? *(check all that apply)*

Allowed:
- Media & root supports that are mineral or plant fiber-based (e.g. silica rock, expanded clay aggregate, perlite, vermiculite, sand, peat, or coir)
- Polystyrene
- Polyethylene, high, medium, or low density
- Polyethylene film or tubing
- (EPDM) Ethylene propylene diene monomer liners

Prohibited:
- Rockwool
- Rigid PVC
- ABS totes and tanks (acrylonitrile butadiene styrene)
- Fiberglass tanks with food grade resin
- Acrylic
- Vinyl hoses or liners

Allowed, with restrictions: if any are checked, see D(ii)
- Soil and compost
- Compressed grow plugs
- Treated wood
- Cement
- IBC totes, only if (1) already in use at the time of certification, and (2) were either purchased new, or producer has written verification that repurposed totes had only been used for food grade materials

Prohibited: if any are checked, see D(iii)
- Compressed grow plugs that contain synthetic fertilizers
- Plastics that contain BPA
- Roofing materials
- Recycled plastics
- IBC totes, re-purposed, without verification from the source that it had only been used for food grade materials

(ii) a. If soil and/or compost is used, does the water re-circulate after coming into contact with these?

b. If compressed grow plugs are used, do they contain synthetic fertilizers or wetting agents?

c. If treated wood is used, does it come into contact with the system water?

d. If cement is used, does it come into contact with system water?

e. If the producer uses IBC totes, were they first added to the system?

f. If the producer uses IBC totes, were they:

(iii) a. What prohibited materials are used, and how are they used (for which system component)? For how long have they been in use?

b. Is the producer willing and able to discontinue using these immediately? If not immediately, by when can they discontinue use?
c. Is there anything else you’d like to add that may help us determine the status of this producer’s certification?

c.

II. Water Source

CNG highly recommends proper water filtration to prevent or remove chlorine, chloramine, pathogens, heavy metals, pesticides, herbicides, fertilizers, antibiotics, and other contaminants that may compromise the health of the system or the crops produced. Care should be taken that filtration is designed for proper flow rate, and that the filtration system is monitored regularly, and maintained or replaced as needed.

A. What is the water source? (Check all that apply)

- □ Municipal (see question B)
- □ Well (see question C)
- □ Rainwater (see question D)
- □ Surface water (Prohibited)

B. Municipal water

Required: Conduct an annual test or obtain annual test report from municipality, with particular attention to levels of chlorine, chloramine, and heavy metals.

Recommended: Producers should test water at the point of use for heavy metals, especially for lead.

Prohibited: Water that exceeds the EPA Guidelines for Heavy Metals in Reclaimed Water for Irrigation. Chemical dechlorinators, such as Potassium Metabisulfite, and other water conditioners are prohibited.

(i) Does the municipal water contain chlorine? If so, how is chlorine removed?

(ii) Does the municipal water contain chloramine? If so, how is chloramine removed?

(iii) Does the Producer have test results or a copy of municipal water testing results from the last 12 months?

(i) □ Yes □ No*
(ii) □ Yes □ No*
(iii) □ Yes □ No*
(iv) □ Yes □ No*

(CNG will hold inspection report until new water test results are reported by producer.)

C. Well Water

Required: The producer must consult with local water quality experts (for example, NRCS agents, county health boards, extension office, state pollution control office, EPA drinking water labs, private well drillers) to determine an appropriate list of contaminants for which their well should be tested, such as heavy metals, pesticides, or pathogens. The producer must keep records of the dates and results of such inquiries, including the name and affiliation of the person consulted.

• Producers must use appropriate filtration or treatment methods based on contaminants identified by the annual test. Depending on the target contaminants, these may include UV, activated carbon filter in the case of chlorine injection, ozone, oxidation, and reverse osmosis. • Testing must occur for any new source before it’s use, and then once annually. Furthermore, we recommend that water be tested after an event that could cause significant change in the groundwater, such as hydraulic fracturing nearby.

Prohibited: Water that exceeds the EPA Guidelines for Heavy Metals in Reclaimed Water for Irrigation, or includes high levels of pesticides, fertilizers, or other contaminants of concern, as identified by the water quality experts consulted.

(i) Whom did the producer consult to determine the list of contaminants to test for?

(ii) What contaminants did the local water quality expert indicate may be a concern?

(iii) Did the producer test adequately based on these recommendations, in your opinion?

(iv) Were the relevant tests conducted within the last 12 months?

(i) □ Yes □ No
(ii) □ Yes □ No
(iii) □ Yes □ No
(iv) □ Yes □ No*

(*If most recent tests results are more than 13 mo. prior to inspection, CNG will hold inspection report until new water test results are reported by producer.)
(v) Were there any results of concern? If so, please indicate what the results were.

(vi) Does the producer treat or filter the water before adding it to the system? What methods are used?

D. Rainwater

Required:
- Collected water must be stored in a closed, food-grade container.
- Producer must use a first flush diverter appropriately sized to the catchment area, flushing a minimum of 0.1-0.5 gallons per 10 sq-ft of catchment area.
- Stored rainwater must be tested for heavy metals and pesticide residues before first use.
- If needed, water must be filtered or treated through UV, activated carbon filter, ozone, oxidation, or reverse osmosis as appropriate, before use.

Allowed:
- Catchment surfaces: polycarbonate greenhouse material, other poly greenhouse films, or metal that is coated with food grade paint. Other materials will be considered on a case-by-case basis, and evaluated on their leaching potential.
- Storage tank materials: fiberglass with food-grade resin lining, virgin polyethylene (not recycled or re-used).
- Rainwater that falls directly into the system for outdoor systems.

Prohibited:
- Catchment surfaces made from asbestos-cement tiles, asphalt, tar, coated terracotta tiles, lead acrylic or bitumen-based paints, pressure-treated wood, or zinc roofing (unless painted with food safe paint).
- Storage tank materials made from repurposed or recycled plastic, BPA, or vinyl.
- Storing rainwater for more than three days without the use of chlorine or testing for contaminants.

(i) Of what materials are the catchment area and storage tanks made?

(ii) Is there a flush diverter that is appropriately sized?
 - ☐ Yes ☐ No* prohibited

(iii) For what contaminants does the producer test?

(iv) How often are tests conducted? Review the most recent tests.

(v) If the producer treat or filter the rain water, what methods are used?

III. Water Quality: nitrifying bacteria, pH, solids,

A. Ask the Producer to discuss how she/he balances stocking density with crop production. Does it seem well matched?

B. Nitrifying bacteria

Required: Producers must provide sufficient surface area for nitrifying bacteria to colonize. Depending on the system design, there may be sufficient surface in the fish tanks, grow beds, and other system components to support adequate populations of nitrifying bacteria, while others may require a separate biofilter – a container filled with loose media to increase the surface area. Care should be taken to ensure that the population of nitrifying bacteria is sufficient to match the ammonia produced by the fish.

What system components provide surface area for nitrifying bacteria to colonize? In your opinion, does it seem to be sufficient to support the level of bacteria necessary to match the ammonia produced by the fish?
C. Supplemental Nutrients

Recommended: Producers should design and manage their system to match fish stocking densities with crop production in order to minimize the need for supplemental nutrients.

Allowed: Chelated iron; calcium and potassium, generally as added for pH adjustment; OMRI-approved nutrient solutions, if suitable for aquaponic systems;

Prohibited: Synthetic forms of the following: nitrogen, magnesium, sulfur, boron, manganese, zinc, copper, molybdenum, nickel

(i) Does the producer ever find it necessary to add supplemental nutrients?
 - YES
 - NO [skip to Question D]

 If yes...

 a. What is added?

 b. How much?

 c. How frequently?

D. Worms

Allowed with restrictions: only if rinsed once upon receipt; allowed to feed on wet corn meal, oatmeal, or cream of wheat for 24 hours to purge their system; and then rinsed a second time immediately before being introduced to the system.

Worms added to the system prior to certification may be grandfathered in.

(i) Does the producer use worms?
 - YES
 - NO [skip to Question E]

 a. If so, did the producer rinse the worms upon receipt, allow them to feed on clean grain for 24 hours, and rinse a second time before introducing worms to the system?
 - YES
 - NO

 b. Are they willing to start doing this if they add new worms in the future?
 - YES
 - NO *prohibited

E. Removal of Fish Waste Solids

Required: Producers must ensure fish waste solids are removed from the system to prevent anaerobic conditions. This is commonly accomplished by, for example, a drum filter, settling tank, swirl sedimentation, or static filters.

Prohibited: Animals or organisms must not be solely relied upon to consume fish waste solids online within the system.

What methods or systems does the producer use to prevent the build up of fish waste solids? Does this appear to be sufficient and effective for the size and style of the system?

F. pH Buffering Materials

Allowed: Calcium carbonate and potassium bicarbonate are minimally-processed materials. Calcium hydroxide, potassium hydroxide, potassium carbonate, nitric acid, phosphoric acid, muriatic acid, acetic acid, and sulfuric acid are allowed.

(i) What materials does the Producer use to buffer pH? (Confirm that these are allowed.)

G. Monitoring pH and nitrogen levels

Required: Monitoring of temperature and pH at least weekly. Monitoring of dissolved oxygen, ammonia, nitrites, and nitrates at least monthly.

Recommended: Daily monitoring of temperature and pH. Weekly monitoring of dissolved oxygen, ammonia, nitrites, and nitrates.

(i) Review and discuss the Producer’s logs recording pH, ammonia, nitrites, and nitrates. Are they recorded regularly? Are there any concerning levels?
IV. Seeds & Transplants

Required: • Seeds must be either CNG, Certified Organic, or grown according to CNG methods whenever available. If a particular variety the producer needs is not available in this form, the farmer may use conventionally grown seeds after checking with at least 3 suppliers to verify the variety is not available. • Any transplants must be grown according to CNG standards. Producers should verify that there are no synthetic wetting agents or fertilizers in the potting mix. Perennials that weren’t grown according to CNG standards may be marketed as CNG after 12 months under CNG management.

Prohibited: • Chemically treated and genetically engineered seeds. • Produce from transplants not grown according to CNG standards may not be marketed as CNG.

A. Seed sources
 (i) Where does the producer purchase seeds? [They should be able to show seed supplier evidence.]

 (ii) How does the Producer make sure that they don’t purchase treated or GM seeds?

 (iii) If the producer purchases conventionally grown seeds, do they have records listing at least 3 commercial seed suppliers who don’t offer that variety in organic form?

B. Transplants
 (i) If she/he grows all or some transplants:
 a. What growing media is used?
 b. Is the producer able to verify that the growing media does not contain synthetic fertilizers or wetting agents?

 (ii) If he/she purchases some or all of his/her transplants:
 a. How does the Producer ensure that transplants are grown according to CNG/Organic practices?

V. Plant Pests & Diseases

Required: All pest and disease management practices must be in compliance with food safety regulations and local laws governing product applications for pest and disease management.

Recommended: Producers are encouraged to rely primarily on biosecurity practice, sanitation practices, cultural practices, physical barriers, and biological pest control to prevent and manage pest and disease pressures.

Allowed: Natural and non-synthetic substances, including microbial, botanical, and mineral-based substances, may be used to manage pests and disease, so long as they're used with sufficient caution to protect fish health.

Prohibited: • Synthetic pesticides. • Copper-based pesticides. • Petrochemical-based pesticides and fungicides.

A. Do you see insects or insect damage? What are the producer’s biggest insect pest challenges?

B. What practices does the producer use to prevent or manage these insect pests?

C. Does the producer use inputs for insect control? If so, indicate here what they are, and whether they appear to be allowed.
D. What are the main plant disease challenges the producer faces?

E. What practices does the producer use to prevent or manage these disease challenges?

F. Does the producer use inputs for disease control? If so, indicate here what they are, and whether they appear to be allowed.

VI. Fish Health

Required: Producers must employ good management practices that ensure stable environmental conditions and biosecurity practices to prevent the introduction of pathogens, to promote fish health and prevent fish diseases.

Recommended: Producers should have a way to quarantine and treat diseased fish offline when needed. When disease does occur, treatments that do not require conventional medicines are encouraged (e.g. offline salt or temperature treatments) as appropriate for the disease and fish species.

Allowed: If the above treatments are not sufficient or appropriate, antibiotics specific for food fish are allowed only if the treatment occurs off-line in a tank that is decoupled from the system.

- Fish treated with antibiotics must be quarantined outside the CNG system for a time equal or greater to the withdrawal times indicated by FDA guidance on aquaculture drugs.
- Any fish waste generated during the quarantine period cannot be used in the re-circulating system.
- When antibiotics are used, producers must record the date, drug, dose, and number of fish treated. This must be available for the inspector to review. Frequent use of antibiotics (more than 3 times per year) will trigger a deeper review of sourcing, sanitation and biosecurity practices.

A. Has the Producer ever found it necessary to use antibiotics or other conventional medications to treat fish? If so, ask them to describe the situations, the frequency, and for how long the treated fish are moved off-line for treatment.

VII. Fish Feed

Recommended: Fish feed that does not contain fish meal from over-fished wild stocks. • Fish feed that is organically grown.

Allowed: Fish feed that is conventionally grown.

Prohibited: Fish feed that contains medications, hormones, and/or human or other animal waste. • Supplemental feed such as duckweed and black soldier fly larvae that are potential vectors for contaminants.

A. What does the producer use for feed? Does it contain any prohibited materials?

VIII. Fish Sex Selection

Prohibited: Hormonal sex reversal treatment is not permitted to occur online (within the system).

A. Does the producer use hormonal sex reversal treatment? Does the producer have an offline tank to administer the treatment?
IX. Energy and Disposal of Waste

CNG encourages producers to conserve energy, improve energy efficiency, and use renewable sources of energy. This includes careful design of the aquaponic system, siting, insulation, lighting, climate, crop and fish species, and energy sources. Solids removed from an aquaponics system have the potential to become a valuable resource or a waste product.

A. Energy

Recommended: Producers should aim to minimize energy use when making decisions about siting, housing; ventilation; insulation; gravity-assisted water circulation; energy efficient pumps, aerators, and lighting; and other aspects of their operation. Producers should consider opportunities to purchase or generate renewable energy to reduce fossil fuel use.

What measures has the producer taken to conserve energy, improve energy efficiency, and/or use renewable sources?

B. Fish waste solids

Recommended: Solids are composted and used/sold as a soil amendment, or an offline aerobic digester is used to mineralize the fish waste solids, which can then be reintroduced to the system.

Discouraged: Disposal of solids in municipal sewage system or septic system.

How does the producer dispose of solid wastes?

C. Nutrient-rich water

Recommended: Applying nutrient-rich water to pasture, soil-based crops, or constructed wetlands in order to maximize nutrient recapture. (As with all CNG standards, local, state, and federal regulations take precedence over CNG standards and recommendations).

Discouraged: Nutrient-rich water should not be applied within 50 feet of natural water bodies including rivers, streams, lakes, or natural wetlands.

When necessary, how does the producer dispose of nutrient-rich water?

X. Preventing Contamination from Adjacent Land Uses

For indoor producers:

A. How does the design and placement of the ventilation system prevent contamination?

For outdoor producers:

A. What is the land use on the land adjacent to the growing system? Is there risk of contamination by spray? If so:
 (i) What is sprayed?
 (ii) How frequently?
 (iii) How is it applied?

B. Are there other factors that increase or decrease risk of contamination:
 (i) What is the distance between the aquaponic system and potential sources of contamination?
 (ii) What are the prevailing wind patterns?
(iii) Is there a windbreak (e.g. trees and shrubs) that helps block drift?

(iv) Is there an agreement with neighbor about spraying times or practices that minimize potential drift?

C. Does the producer have an adequate buffer based on the spray concerns? [If there is risk of contamination, the farmer must have an adequate buffer. If there is not an adequate buffer, please indicate any necessary corrective measures here and also on the Inspection Summary.]

For producers sharing greenhouse space:

Required: Producers sharing greenhouse space must ensure that there is a physical barrier between their operation and any areas where prohibited substances may be used. The other producer must notify the CNG producer and turn off any air circulation prior to spraying any substances prohibited by CNG standards. Both the CNG producer and the other producer(s) sharing the greenhouse space are required to co-sign a declaration detailing this understanding.

Recommended: Producers who need to share greenhouse space are encouraged to share with producers who don’t spray substances prohibited by CNG standards.

A. How does the producer prevent contamination? In your opinion, is this sufficient to be in compliance with the requirements detailed here?

Did you address these items?

- □ System design
- □ Water source
- □ Water quality management
- □ Water testing
- □ Seeds and transplants
- □ Growing medium/root support
- □ Plant pests
- □ Plant diseases
- □ Fish
- □ Energy
- □ Waste
- □ Contamination prevention
A. Describe notable or outstanding aspects of the operation. Consider making this a tour site for a gathering of your local network of aquaponics producers. 😊

B. The inspector may find minor violations that aren’t grounds for removal from the CNG program but that should be addressed in order for the operations certification to be continued. Do you recommend any Corrective Actions be taken to bring the operation into stronger alignment with CNG standards and/or principles? (These should also be noted in the Inspector Contact Information page.) In what timeframe should they be addressed (e.g. immediately, within two months, by next year’s inspection, etc)?

Corrective Actions:
Time Frame:

C. List any Corrective Actions from the last inspection and indicate whether they have been acted upon.

SUSTAINABILITY GOALS: going beyond the core standards

This is to be completed by the farmer with the assistance of the inspector. It should remain on farm for future reference. Sustainability is an ongoing process and is context specific. We are united by our commitment to caring for the earth and our families with the long-term view in mind. Certified Naturally Grown is largely focused on ecological sustainability; however, to ensure the continued success of any farm it’s important to include the economic and social aspects of sustainability as well.

The farmer should take this opportunity to reflect on and set some goals for improving sustainability on his or her farm using the inspector as a sounding board. These may be short-term or long-term goals and could be in any of the following areas or others:

- **Water**: Use efficiency, rain water capture, run-off prevention, protecting wetlands and waterways
- **Inputs**: Use efficiency, reducing use, replacing with local products and/or preventative practices
- **Biodiversity**: Protecting/providing habitat for wildlife, buffering wild areas, supporting beneficial insects
- **Energy**: Energy efficiency, renewable energy
- **Waste**: Reduction, reuse, recycling
- **Economic viability**: Maintain/improve the bottom line; pay yourself and staff fair wages.
- **Engaging the community**: Educate the public, increase food access

For the farmer being inspected: What are 3 goals for improving sustainability of your operation in the short term and long term? Discuss strategies to achieve these goals.

<table>
<thead>
<tr>
<th>Goal</th>
<th>Time frame</th>
<th>Steps necessary to make it happen</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3.</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

For the farmer being inspected: What are 3 goals for improving sustainability of your operation in the short term and long term? Discuss strategies to achieve these goals.
LIST OF INPUTS

List all inputs used for fertility, pests, and disease. You may also use a separate page. To expedite the process, this list may be completed beforehand by the farmer and then reviewed on site by the inspector. Alternatively, the inspector can fill it in during the inspection. This sheet should remain on farm for next year’s inspection. It may be used again, and edited as needed.

For reference you can see a link to the allowed and prohibited inputs at http://www.cngfarming.org/aquaponics. It is not a comprehensive list, but includes the most common inputs. If you have a question on a specific product, you can do a quick search on the OMRI database (online at www.omri.org) or contact CNG. (Note that not all OMRI-approved products are appropriate for aquaponic operations.)

CNG encourages pest and disease management practices that are:

- Preventative, such as cultural practices, variety selection, crop rotation, and sanitation
- Mechanical and physical practices, such as exclusion, pruning, hand removal, lures and traps
- Biological, botanical or mineral products, used in a way that protect fish health

NOTE: Inputs containing synthetic materials are not allowed, unless a specific variance is granted.

<table>
<thead>
<tr>
<th>Product</th>
<th>Use</th>
<th>Frequency</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

How does the producer evaluate whether or not a product is approved for use in CNG production?

Are there any inputs that could be eliminated or reduced through cultural practices? Could any be replaced with a product produced locally?

--------------------------------------- ! NOTE ! ---------------------------------------

The following section (the Summary Inspection Report) is the one that is scanned and made public on the farm’s profile.
Certified Naturally Grown
AQUAPONIC PRODUCE SUMMARY INSPECTION REPORT

Producer/s: ____________________________ Name of operation: ____________________________
Inspector: ____________________________ Affiliation (e.g. farm, university, etc.)________________

The inspector is:
☐ aquaponics producer – CNG ☐ aquaponics producer – Cert Organic
☐ aquaponics producer – non-certified ☐ aquaponics instructor or educator
☐ hydroponics producer ☐ soil-based farmer – CNG or Cert Organic
(as approved by CNG in advance)

Date of the inspection: ________________ How long did the inspection last?:____________________

Based on my observations and interview with the producer(s), I feel confident in making the following declarations about the operation:

The producer is in compliance with CNG aquaponic standards, and the are not using prohibited materials insecticides, herbicides, fungicides, or fertilizers.

The producer is careful to make sure that no genetically modified or chemically treated seeds are used, and that organically grown seeds are used whenever available.

The producer is committed to humane treatment of fish including ensuring high water quality and a healthy, stable environment.

The operation under consideration looks to be surrounded by an adequate buffer to protect from chemical spray drift contamination from neighboring farms or other businesses.

The producer strives to minimize the environmental impacts of production and improve sustainability in all areas of operation.

Agree / Disagree _________ (Your initials)

I feel confident in recommending that the above listed producer(s) and their operation be included not be included in the Certified Naturally Grown program.

_________________________________ _____________________
Signature of Inspector Date

As a CNG farmer I’m committed to continually enhancing my farm's sustainability and going beyond what's required. During the next twelve months I will...

_________________________________ _____________________
Signature of Farmer Date
INSPECTOR CONTACT INFORMATION

This information will be kept completely confidential but is required for this form to be valid. It is only so we have the option to contact you with any follow-up questions and/or to confirm that you conducted the inspection and filled in this form.

Operation you inspected:__

Your Name:__________________________________ Affiliation: ______________________________

Your Phone: __________________________ Your Email:___________________________________

Your Mailing Address:_______________________________________

Do you recommend this operation for CNG certification?

□ I recommend this operation □ I recommend this operation □ I don’t recommend this
with minor corrective actions operation for CNG certification

You’re almost done! But FIRST:

□ Did you sign the Summary Inspection Report at the bottom? Did the producer sign too?

□ Did you initial the agree/disagree statements?

□ Did you indicate your operation/affiliation on the summary report?

Please return all inspection documents to CNG using one of these three methods:

Mail to: Certified Naturally Grown
Fax to: 718-596-4697
Email to: info@naturallygrown.org

Certified Naturally Grown
540 President Street, Third Floor
Brooklyn, NY 11215

We recommend a copy of these forms (or the original) is left with the producer whose operation was inspected.

Inspection forms can be downloaded at www.cngfarming.org/cngforms

Don’t hesitate to contact us if you have any questions: info@naturallygrown.org or 845-687-2058